skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yi, Koong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solar-induced chlorophyll fluorescence (SIF) is widely accepted as a proxy for gross primary productivity (GPP). Among the various SIF measurements, tower-based SIF measurements allow for continuous monitoring of SIF variation at a canopy scale with high temporal resolution, making it suitable for monitoring highly variable plant physiological responses to environmental changes. However, because of the strong and close relationship between SIF and absorbed photosynthetically active radiation (aPAR), it may be difficult to detect the influence of environmental drivers other than light conditions. Among the drivers, atmospheric dryness (vapor pressure deficit, VPD) is projected to increase as drought becomes more frequent and severe in the future, negatively impacting plants. In this study, we evaluated the tower-based high-frequency SIF measurement as a tool for detecting plant response to highly variable VPD. The study was performed in a mixed temperate forest in Virginia, USA, where a 40-m-tall flux tower has been measuring gas and energy exchanges and ancillary environmental drivers, and the Fluospec 2 system has been measuring SIF. We show that a proper definition of light availability to vegetation can reproduce SIF response to changing VPD that is comparable to GPP response as estimated from eddy covariance measurement: GPP decreased with rising VPD regardless of how aPAR was defined, whereas SIF decreased only when aPAR was defined as the PAR absorbed by chlorophyll (aPARchl) or simulated by a model (Soil Canopy Observation, Photochemistry and Energy fluxes, SCOPE). We simulated the effect of VPD on SIF with two different simulation modes of fluorescence emission representing contrasting moisture conditions, ‘Moderate’ and ‘Soil Moisture (SM) Stress’ modes. The decreasing SIF to rising VPD was only found in the SM Stress mode, implying that the SIF-VPD relationship depends on soil moisture conditions. Furthermore, we observed a similar response of SIF to VPD at hourly and daily scales, indicating that satellite measurements can be used to study the effects of environmental drivers other than light conditions. Finally, the definition of aPAR emphasizes the importance of canopy structure research to interpret remote sensing observations properly. 
    more » « less
  2. Abstract Terrestrial evapotranspiration is the second‐largest component of the land water cycle, linking the water, energy, and carbon cycles and influencing the productivity and health of ecosystems. The dynamics of ET across a spectrum of spatiotemporal scales and their controls remain an active focus of research across different science disciplines. Here, we provide an overview of the current state of ET science across in situ measurements, partitioning of ET, and remote sensing, and discuss how different approaches complement one another based on their advantages and shortcomings. We aim to facilitate collaboration among a cross‐disciplinary group of ET scientists to overcome the challenges identified in this paper and ultimately advance our integrated understanding of ET. 
    more » « less
  3. Whitehead, David (Ed.)
    Abstract Hydraulic stress in plants occurs under conditions of low water availability (soil moisture; θ) and/or high atmospheric demand for water (vapor pressure deficit; D). Different species are adapted to respond to hydraulic stress by functioning along a continuum where, on one hand, they close stomata to maintain a constant leaf water potential (ΨL) (isohydric species), and on the other hand, they allow ΨL to decline (anisohydric species). Differences in water-use along this continuum are most notable during hydrologic stress, often characterized by low θ and high D; however, θ and D are often, but not necessarily, coupled at time scales of weeks or longer, and uncertainty remains about the sensitivity of different water-use strategies to these variables. We quantified the effects of both θ and D on canopy conductance (Gc) among widely distributed canopy-dominant species along the isohydric–anisohydric spectrum growing along a hydroclimatological gradient. Tree-level Gc was estimated using hourly sap flow observations from three sites in the eastern United States: a mesic forest in western North Carolina and two xeric forests in southern Indiana and Missouri. Each site experienced at least 1 year of substantial drought conditions. Our results suggest that sensitivity of Gc to θ varies across sites and species, with Gc sensitivity being greater in dry than in wet sites, and greater for isohydric compared with anisohydric species. However, once θ limitations are accounted for, sensitivity of Gc to D remains relatively constant across sites and species. While D limitations to Gc were similar across sites and species, ranging from 16 to 34% reductions, θ limitations to Gc ranged from 0 to 40%. The similarity in species sensitivity to D is encouraging from a modeling perspective, though it implies that substantial reduction to Gc will be experienced by all species in a future characterized by higher D. 
    more » « less
  4. null (Ed.)
  5. Abstract. Plant transpiration links physiological responses ofvegetation to water supply and demand with hydrological, energy, and carbonbudgets at the land–atmosphere interface. However, despite being the mainland evaporative flux at the global scale, transpiration and its response toenvironmental drivers are currently not well constrained by observations.Here we introduce the first global compilation of whole-plant transpirationdata from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021).We harmonized and quality-controlled individual datasets supplied bycontributors worldwide in a semi-automatic data workflow implemented in theR programming language. Datasets include sub-daily time series of sap flowand hydrometeorological drivers for one or more growing seasons, as well asmetadata on the stand characteristics, plant attributes, and technicaldetails of the measurements. SAPFLUXNET contains 202 globally distributeddatasets with sap flow time series for 2714 plants, mostly trees, of 174species. SAPFLUXNET has a broad bioclimatic coverage, withwoodland/shrubland and temperate forest biomes especially well represented(80 % of the datasets). The measurements cover a wide variety of standstructural characteristics and plant sizes. The datasets encompass theperiod between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data areavailable for most of the datasets, while on-site soil water content isavailable for 56 % of the datasets. Many datasets contain data for speciesthat make up 90 % or more of the total stand basal area, allowing theestimation of stand transpiration in diverse ecological settings. SAPFLUXNETadds to existing plant trait datasets, ecosystem flux networks, and remotesensing products to help increase our understanding of plant water use,plant responses to drought, and ecohydrological processes. SAPFLUXNET version0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The“sapfluxnetr” R package – designed to access, visualize, and processSAPFLUXNET data – is available from CRAN. 
    more » « less